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There are situations in which one wants to approximate a mathematical
object x in terms of mathematical observations of x. For example, x may be
a function on [0, I] to lIt and the observations may be a table of values of x
at SI , S2 , ... , Sm E 10, I]. Here the observations are the In-tuple x(s l l,.", x(s",).

As another example, x may be a function on the square [0, 1] [0. I] to 1R1,
and the observations may be specified cross-sections of x, that is, the functions
X(SI • '),,,., x(s,,, , '), and x(', t[), ... , x(·. t m') on [0, 1] to 1R1, where s, , I, E [0, 1].
In this instance the observations are functions and, therefore. contain more
information than a finite number of scalars.

Whether the observations of x are scalars or not, it is advantageous to
combine them into one object which we denote Ft: and which we call the
observation of x, In the second example above, F'( is the (111-! m')-tuple of
functions X(SI' '), ... , x(s,,,, 'J: x(·. t1),,,,, x(', t",.).

Besides approximating ;r, we may wish to approximate Gx, where G is a
given operator, in terms of the observation Fr. Let us write

where E is the operator which describes our operation on the observation and
A is the operator which describes the process of approximation. The error in
the approximation of Gx by Ax is

Rx= (;x -- Ax (ix - F;Fr.

This paper is concerned with the choice of E and the study of R,
Suppose that the operators G, F, and E have been specified. Whereas, Ax is

determined by h: alone, the error Rx need not be so determined. We will
posit the existence of a coobservation operator U such that Ux and Fx
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together determine x and, therefore, Gx and Rx. Then partial mformation
about the coobservation Ux, for example a bound on the norm of Ux, will
permit us to appraise Rx.

The optimal approximation, in senses to be described, of x is called the
spline approximation of x, relative to F and U. And the optimal approxi­
mation of Gx is simply Gg, where g is the spline approximation of x.

In particular cases Fx and Ux will not merely determine x but will contain
more information than is necessary. Such excess information permits us to
draw conclusions about Rx which are not otherwise available. For example,
in our first illustration above, if Ux x" cc= the nth derivative of x on [0, I],
where II III, then the smaller II is, the more valuable is knowledge about x" .
If 11 < m, the observation x(sJ), .... x(s,,,) and the coobservation x" over­
determine x.

The present paper continues the work of my earlier [I lj, but treats the
entire problem anew. Hypotheses are reduced. No conditions of completeness
are required. Proofs are improved, and two errors are corrected.1

Splines, as defined in this paper, include all minimizing splines of other
authors. Our hypotheses of linearity and inner products are justified, I think,
by their power and by the fact that many preproblems can be put into our
mold as easily as into another. A vague space which is part of a preproblem
can often be exemplified by an inner product space [9, Chapter 9; 10].

Applications of the present theory are in Sections 8 and 9 below. In
Section 8 the splines are harmonic functions and the observations are the
boundary values of the unknown functions. Our theorems then pertain to the
Dirichlet problem.

1. HYPOTHESES

Let X be a linear space, Y, Z be inner product spaces, and W be a normed
linear space, all over the real or the complex numbers. Let

F:X~+Y, U: X -~ Z, G: X -~ W

be linear operators. For any x E: X, we call Fx the observatioll of x and Ux
the coobservation. We wish to approximate Gx by Ax, where Ax depends
only on Ex. Tn particular, W may be X, and G the identity.

Assume that
Fx ,,~ 0, Ux 0, XEX

imply that x =~c O. Thus, Fx and Ux together determine x E: X.

1 On page 228 of [11], the hypothesis that FiX is closed does not imply that V.'¥' is closed.
Lemma 4, which is true, is misapplied to a space which need not be a Hilbert space.
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2. THE HILBERT SPACE it AND THE SPLINES

Following Golomb-Weinberger [5], who, however, consider only the
scalar case (Y finite dimensional), we now construct a Hilbert space -'fl. For
x, y E X, put

(x, y)= (Fx. Fv) + (Vx. Vy),

where the terms on the right are inner products on Y and Z, respectively.
Then (x, x) = 0 iff xc~ O. Therefore. (x, y) is a valid inner product on X.
Let ,J[ denote the space X with this inner product. Then the operators F and V
are bounded on ,J[ and, hence, continuous on /[.

Take completions ,J:, Y, Z of the spaces ,r, Y, Z, and completions F, U
of the operators F, U, respectively [9, p. 302]. Then.1, Y, Z are Hilbert spaces
and F, U are linear and continuous. We continue to call F the observation
and U the coobservation operator. Note that

Vx 0, X F.r

imply that x e= 0, and that

(x,y) (Fx,Fy)f- (Vx, Vy),

Put

x, Y E ;J[.

N =e kernel F cc {x E .f: Fx= 0:

and
M N' :x El: (x, 0 = °whenever' fCC N;.

Now if , fCC N, then F' = °and (x, nee (Ox, V O. Hence,

M= {x E.I: (Vx, VO .~= 0 whenever' EN)

and
M 'J kernel V. (I)

We call M the space of splines, relative to F, U.
Assume that neither M nor N is the entire space .0/'; that is, assume that for

some XO E X, F'(o c/- 0; and for some y0 E X, both Fyo 0 and yO 0.
Put

I1 ccc Proj M = orthogonal projection of .J[ onto M.

For x E ::1', we call fI x the spline approximation of x. The error in the
approximation of x by fI x is

x- I1 x = Proj.v x.

Note that the splines and other constructions of this section are independent
of Wand G.
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3. THE QUOTlEl\T THEORE\l

The quotient theorem is fundamental in linear approximation and is as
follows [7; 9, p. 310].

Let .r/, .;(J, '(; be normed, linear spaces, '/ and ((; being complete. Let P

be a surjective linear continuous operator on c/ onto -YJ, and R be a linear
continuous operator on .r/ into ((;. If Rx 0 whenever Px 0, x c: r/,
then there is a unique operator Q on :YJ to ((; such that R QP. And Q
(the quotient of R by P) is linear with closed graph. Furthermore, Q is
continuous if ./1 is complete.

Completeness of .,jIj is sufficient but not necessary for the continuity of Q.
Of course, ./1 is surely complete if :/1 is tinite dimensional.

LEM'vlA 1 (dependence of error on coobservation). There is (/ unique map
q: Di" >.l such that

Pro.is qU;

q is linear and continuous, with Banach norm unity.

Proof Apply the quotient theorem with e
/

If Ux O. x F.t, then x c AI by (I) and Proj\ x
unique and linear,

It remains to show that the Banach norm q
imply that q is continuous. Now

l' '( andYJ Ufo

O. Thus. if exists and is

of if is unity. as this will

II
I Pro.iNX!1sup -------

Ux
sup

where x ~ s' ~ /1,'[,' (e N. As ~ may be zero, it follows that if I.
On the other hand.

since (r 0

u~

mr U,) O. Hence, q I.

LE'vl\IA 2 (dependence of spline on observation). There is (/ unique map
e: r!r -0. .''/' such that

e is linear. with closed graph. And I' is continuous ilf'F1' is closed in Y. In any
case

e 1.

We may call I' the spline operator. It carries the observation of x E.1' into
the approximation of X. Continuity of I' is desirable because in practice Fx
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is often known only approximately. If e is continuous, then e may be extended
so as to be bounded linear on all of Yto .iI, with no increase of norm. Then a
contaminated observation (w -'- ow) E Y, where w Fx, x f:' .1', can be used
as an input and e(w 6W) c~c ew , e(ow). The distortion e(6w) is bounded
in terms of OU):. If F.£ is finite dimensional, then e is surely continuous.

Proojoj' Lemma 2. Apply the quotient theorem with ,r/ ~, .1' '(; and
;;J FI. II' Fx 0, X E .Jl', then x Nand ProjM x 0. Hence, e is linear
with closed graph; and I' is continuous if:jIj is closed.

We now show that conversely Ft is closed if I' is continuous. As
i' M IV and FN 0, it follows that F.T .C· Flv!. Since I' is continuous.
there exists h x; such that

1')' b ,1.1'!, ,1' x 1'.

Now ('Fx ~ x if x E /vl; therefore,

x h iFx x (C AI.

To show that FM is closed, suppose that t' /If, 1'= J, 2, ... , and that
Ft" ~ y E Yas l' -+ 00. Then {FtF

} is a Cauchy sequence in Yand, therefore,
it": is a Cauchy sequence in M. Hence, t"-->- t 0 /'vl. Since F is continuous.
Ff -~ h .1' E FM. Thus, FM is closed.

It remains to show that I I' 7:;. Now

sup
F:;,."O.
"EM

Ftl" , ,V~12--_....._----.

N',2 I,

wherc x t ,. t fcc M, '(C N, since Fx Ff This completes the proof of
the lemma. Note that (! will be finite iff Vt' Ft I is bounded, t EM,
F~ O.

Remark. Observation and coobservation are dual in our hypotheses but
not in our con struction or in the roles that they play. Thus, N= kernel F,
whereas M:J kernel V properly. We envisage calculations based on a known
Fx. with Vx unknown or partially unknown, x El.

4. PROPERTIES OF SPLI!\ES

THEORL"l I (spline interpolation [5, 3, 14-16, I]). For each .Y E.f' there is
a unique {; AI such that Ftc Fx; and {; IT x.

Proof The condition Ft= Fx may be written x- t'" N. The decom­
position theorem for /1' implies that the decomposition of x into ~. E M and
x tEN is always possible and unique.
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COROLLARY. For each possible observation wE Fi', there is a unique
~ E M such that F~ w.

Proof If (lJC-c Fxo, then ~ n X O ew, by Lemma 2. Thus, ~ is unique.

LEMMA 3. /f x EJ! and ~ n x, then

Oxi

and

IX

, Proj,. x,

Proof The last two of the continued equalities are immediate
(Pythagoras). And

I f(x __ ~)' 2

since x - ~ rC' N. And

X il 2 i ~ ,;2 Fx ! ;~ -I-
I Ox 2 F~ ,2 i O~ 2 Ux U~

"

Finally,
(~. x ~) --- 0 (O~, Ox - U~).

THEOREM 2 (optimal interpolation [6. 5. 21. 3, 1416, 1J). For each
x E.£, the norm 'i Oy is minimal among all y E ,f such that Fy Fx iff'
y = nx.

Proof Put ~ = n x. Then F~ cc Fx. Now consider yi[' such that
Fy = Fx. that is. y - ~ E N. Then ~ = n y and, by Lemma 3.

o
with equality iff .J' f

y C 12
S ' Oy2

THEOREM 3 (approximation of Ux [21, 3, 14, 16, I]). For each x E.f. the
norm O(Yj x)1 is minimal among all 7} C A1 iff O(Yj ~) O. where
~ = nx.

Proof If Yj EM, then

7}-- x (Yj-~) + (~ - x). Yj- ~E M. ~ -- XE N:

Yj - x 1

2 ~= Yj --- {; 2 T ~- X I 2;

II F(Yj - x)' 2 10(Yj - x)I'2 F(Yj- Dj2 I- O(Yj - ~)i2

-l- 0 +i o(~- X)!!2.
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Now F(y) - x) = F(Y) - D, since x- gEN. Hence,

with equality iff V(y) - g)= o.

THEOREM 4 (a lower bound on Vx I! [17a; 12, p. 84]). For any x E ,)T,

Ux VeFx

with equality iffx = eFx.

Proof Lemma 3 implies that I, Vx ;;: ug g = n x. with equality iff
x g. Now ( = eFx, by Lemma 2. This completes the proof.

Note that the operator De is accessible to us. Thus, Theorem 4 gives a
lower bound on the norm of the coobservation in terms of the observation.
If Y is finite dimensional, II DeFx il 2 is a quadratic form in the observation Fx.

It may appear surprising that Fx should give information about Dx, as our
sole hypothesis has been that Fx = 0, Ux = 0, X E X imply that x = O. If
F and U are independent, Theorem 4 will assert merely that Dx!, ;;: 0 with
equality iff x =c eFx. The more dependent F and U are, the more informative
Theorem 4 is.

5. ApPROXIMATION OF Gx

Suppose that G is a given operator on X to a normed linear space W. We
now seek an approximation of G in terms of F. As the sets X and .:r are the
same, G is an operator on .Jf to W.

Assume that G has an extension G::1f -)- W which is linear on /1 and
continuous on N C .df'. Let

be the square of the Banach norm of the restriction G r N of Gto N. Thus,

J = sup I' G2; !i 2 =
{EN.
;{!!~l

sup I: G2; 112•
{EN.

Ilihli=l

The last equality follows from the fact that 1 , :]2 = I! I' 2; 1,2 + V, 112 = V,?
Put

An = G0= GeF.

We shall see that An is a natural approximation of G, among all maps which
are independent of V.
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LEMMA 4. For any x E .f'.

.1(1 Ox ["
where

IIx crx.

Of i) .I Ox

Anx Gt,

12)

The inequalities are sharp in the following strong sense. For each E O. each
w F.r and each d Dew there is all Xo fc Jr such Ihat FXII w,

! Oxo d, and

fO ceu: (.\)

and for each E o and d 0, there is all Xl .1' such thaI U.,l d and

.I Ox l 2 -- E. (4)

II G is a jilllctional, then equality occurs ill fhefirst part 0/(2)for allY prescribed
w Fx EF.t and d Ox
(2) for any prescribed d Ox

I Dew , alld equality occurs in both parts of
O.

Proo{ Since G-- Ao G Proiv , it follows that

.1(1, U, '2 11,.\ fCC .1',

are prescribed. We
d. and (3) holds.
Dxo Aoxo I

by Lemma 3 and the definition 01'.1. This implies (2).
Suppose that E O. w Fx, x E Jr. and d Dew

shall show that XO c f exists such that Fxo w. Oxo
If d Dew I. this is immediate. for we take XO ~; then

E. Assume now that d Oeu). Take k so thato
Dew ~.

The definition 01'.1 implies that '0 N exists such that

and
D(O Ao'o .I k "E/ ,-

slI1ce A "-0 Gn '0 O. Puto~

XO ::::. k'o to ~tl ew nx.. ,

Then n XO

by Lemma 3. Hence. Oxo c= d, and Pxo Pto = Px == w.
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Now,

Gxo kG~o Ge,

Aoxo= kAo~o L Aoto = kAoC) 'T Gto,

Gxo . - Aoxo ' 2 =-c : k 2.1 G'o - AoC'I 2 I k 2(J E; k 2) {,2 J E.

This establishes (3).
Next take w = °in the preceding discussion. Then (3) reduces to (4) with

Xl x O•

Finally, suppose that G is a functional. Then G lV is a linear continuous
functional on the Hilbert space lV. Let g E lV be the dual (representer) of

G lV. Then, putting '0 -= g! g we see that

The rest of the argument establishes (3) and (4) with E = °and inequality
replaced by equality.

THEORE\1 5 (geometric property [5, 15, 17, 2]). For w r= Ft and d 0, put

T {xEX:Fx=wand ' Ux! dl.

Then ris nonempty ifj"d j Uew I, and r is the intersection oj" the closed balf
in .;{" oj" radius C w i'2 -I ( 2 )12, center 0, and the hyperplane to -:- N. where

And Gr, ij"nonempty, is a convex bounded subset 01' W, with center Gto and
maximum radius P/2((P_1 U~o !2)1/2.

As the center of a bounded set is unique, Gto is a natural approximation of
Gx, x E T. But to and Gto are independent of d. Hence, G~o is a natural
approximation of Gx, for all x E /t for which Fx ~. w. As wE F.Jt is arbitrary,
Gt is a natural approximation of Gx, for all x E .Jt, where ~7C IT x eFx.

Prooj" 01' Theorem 5. The set {x E f: Fx = w} is ~o .~ lV, where w =-~ Fxo
for some XO E Jt and to = IT XO ~_. ew. Thus, Fto = w= F(to - N); and
Fx w, x E .1", implies that x to E N, and vice versa.

The set {x E .1':i x 12 II W 1'2 -- d 2} is the closed ball of square radius
w ji2 -, (12 and center O. It is the set {x EX: Ux I d}, since I x 2 =

W!2 Ux
Thus, r is the intersection of the two sets and is nonempty iff

I to [2 W 12 +- d2
, that is, I' U~o d.

For any x E T, IT x == ew = ~o.
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Since r is convex, so is Cr. We now show that cr, if nonempty, has
center cgo. Thus, consider any x E r. Put Y= 2go-- x. Then IT y to,
and, by Lemma 3.

Ux,

Hence, Vy Ux AlsoFy == 2F~o Fx Fx ~... w. Hence,y E r, and
Cx, Cy E cr. Now Cy == 2Cgo -- Cx and

Cy - Cto =(Cx cgO).

Hence, cr has center Cto.
Lemma 4 implies that cr is

~ J(d2 - vgo 11 2) and J(d2

maximum radius is as stated.

COROLLARY (optimality of Ao)'

d ;?:' Vew

bounded, with maximum square radius
Vto 1'2) -- E, for any E O. Hence, the

For each f3 E W, each w E F.uj', alld each

sup Ii Cx f31[2 J(d2 - Vto li 2),
;)'Er

to ew.

If W is a Hilbert space and f3 7" ego, then the supremum is strictly greater than
the right member.

Thus, f3, as an approximation of Cx, x E r, is never better than Cto
(cf. Lemma 4). And if W is a Hilbert space, f3 is certainly worse,
f3 = Cto.

Aox
unless

Proof By Lemma 4 there is a sequence x' E r, v I, 2, .... such that

Cx" ..- Cto ',2 J(d 2 -- ! V to (2) -, I lv,
Fx" = w. and ] Vx' d.

Put
y" = 2to - x'.

Then y" EO r for all v. Let z" denote x" or y' according as I' Cx" -- f311
II Cy·- f3 !i or the contrary. Then

II Cz' - f31: = max(il Cx' - f3 ii, Cyl' -- f3 )
= max(Ii(Cxl' - CtO) + (cgo .. (3)11, ]1(Cy" -- cgO) + (cgo - (3)II)

= max(ll(Cto - (3) + (Cx" - cgo)'l, 'i(Cto - (3)- (Cx" - CtO)j:).

Now

maxCl u + v II, !, u V!') II, l' EO W.



APPROXIMATION BASED ON NONSCALAR OBSERVATIONS 325

Hence,

sup Cx - f311 2 ?: sup ex' - ego 11 2 = J(d2
- ugo In

J'Er 1.'=1.2, ...

Furthermore, if W is a Hilbert space, II 'ft 0, and l' is bounded, then

max(l II -+ l' , U - l' !) - l' ,i 8

for some 8 °[II, p. 230]. In this case, then,

sup il Cx - 13 11
2

:l'Ef'
sup Cx" - CtO:1 2

v~1,2 ...•

J(d2

if CtO .... 13 cp 0, since Cx" - CtO is bounded.

6. ADMISSIBLE ApPROXIMATIONS

Let .r/ denote the set of operators A: .f -)- W such that

and R = C - A = QU,
(Ief

where E: f',J[ --+ Wand Q: U.Jt -)- Ware linear. The algebraic part of the
quotient theorem implies that A E .w iff Ax depends linearly on the observa­
tion Fx, x E .J[', and Ax = Cx whenever Ux c= 0. We say that A is an admissible
approximation of C if A E ;:/.

Now An = C TI is an admissible approximation of C. For

Eo == Ce,

by Lemma 2; and

Qn = eq,

by Lemma I.

THEOREM 6 (minimal2 quotient [8; 9, Chapter 2; II; 15; 17; 18--20; 4; 2]).
For A E .r'/, the Banach norm Q of Q is minimal it' A = An , in which case

Conversely, it' W is one-dimensional and II Q is minimal, then A = An . If W
is many dimensional, then [I Q II may be minimal even though, A 'F An.

2 Theorem 6 answers affirmatively a question raised in [9, p. 107] about broad and narrow
interpolation. The spline approximation is best in both the broad and the narrow sense.



326 SARD

Proo( Part I. Consider A (' or! and R
definition of the Banach norm

G A QU. From the

Q '.')1-
1 Rx 11 2

sup
Ux 12

sup G~
'EN,

!'O(II-o-1

J.

since A~ ~ O. ~ E: N. and U~!

Now

~ . As Ao rI, it follows that

Qo l
2 J.

sup
,'J'C'.T.

0"'.--0

R"Xil
lUx

sup
;;r:;;,J',

Dx/o.
Proj.v:L,,,O

since the excluded case Proj;\ x o would give R"x O. By Lemma 3,

o
and

Ux

o at,"
Uy':2 L Dx O.

Hence.

Thus.

for alJ A E J/.

sup
XE.C:,.,

Pro,b·-.!''' ()

G ProjN x -)

1 ProiN x ;2

J Q

G N 1,2 .l.

Part 2. Suppose that ~v is one-dimensional. To fiX our ideas, let the
scalars be the complex numbers. We shall show that A" is the only element
of or! which minimizes Q ; that is. that

Q ;2
, J if A"

For all ~ E N. R~ G~ ~~ R,,~. Hence. there must be an element t" fC Iv!
such that Rto 0 (otherwise R ~cc R,,). Then Dt" 0, since R QU.

Now
J sup i G~

<EN,
10';:'1" 1

If J O. then G~ 0 for all ~ eN. and R"x G Projy x 0 for all x E I.
Hence, Qu = O. On the other hand, Q 0, else R~u O. Hence, Q
i Qo '= 0, as was to be shown. Now assume that J O.
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Since GIN is a linear continuous functional on the Hilbert space N, there
exists (0 E N such that

I.

Put

Then

1112 == _ R~~+ 1 II V~o f
P/2 ,I U~OI,2

I Rxo I.

And
RCO ["

. S 'IVco'2 V70 I. 2
lliU~01141. S I. -; ~

I R~O [2 I 111 VeT------_.__._,----

111 V~o II"

I. Hence,

! Rxo ,"

Ii UX02
1.

Part 3. If W is many dimensional, the following elementary example
shows that A o need not be the only element of.r! which minimizes Q i.

Let

F, = (x:j , x. ' X,j) E Y,

Ux (Xl. X 2 ' X a) E Z,

Gx c= (Xl' x 2 , X 4 ) E w.
X ~= (Xl. X 2 • X;l , X. ' X:;) E X.

Completions of spaces and operators are not needed because of the fInite
dimensionality. Now [II, p. 238], A Eel iff

a, b, C E ~.

Then
Rx .-= (Xl - aX;l' X 2 -- bx:1 , -cx:J QUx.

where Q: Z->- W is represented by the 3 3 matrix

('~ ~ ~~~).
o 0 -c
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Now ,I Q '.2 is the largest absolute autovalue of the product of this matrix by
its transpose. And I is an autovalue. Hence.

,Q l.

Clearly i Q, I, if abO and ! c I. Thus, the minimum IS not
attained uniquely. The reader may verify that Q-c Qo iff abc O.

7. THE COMPLETENESS CONDITION

In some applications the space X is normed and the norms in X and .I
are equivalent. Then X and ,t have the same topology and X =~ .;t The
simplest case is the one in which X XlJ'; all the bars over our symbols
may then be omitted.

Let us say that the completeness condition [5] holds if X is normed, if F
and U are continuous on X, and if h < Xo exists such that

all x E X.

This implies that kernel F (\ kernel U .. {O;.

LEMMA 5. Suppose that the completeness condition holds. Then X and .1'

have equivalent norms. As sets X1" andX ,;{. Furthermore, if' G: X -~ W
is linear and continuous, then the completion G: /1' --~ W exists and is linear and
continuous. Conversely, if X is normed, if' F. U are continuous on X, and
X =-~. /t, then the completeness condition holds.

Proof Since F and U are continuous on ,r. c x. exists such that

Ix all x Co X .il.

Now the completeness condition implies that

.1 x i~

Thus, X and .1' have equivalent norms. Hence, the completions X and ,·t are
equal as sets and have equivalent norms. Finally, G: d[ ->- W is linear and
continuous since G: X ->- Wis.

To prove the converse statement, note that if X =~ .:t, then the identity:
,I ->- X is continuous, by one of Banach's theorems [9, p. 307]. and the
completeness condition holds.

8. HARMONIC FUNCTIONS

In the following application of the theory, harmonic functions are splines.
Let Q be an open region of [[;£111 on which the divergence theorem holds,



APPROXIMATION BASED 01\ NONSCALAR OBSERVATIONS 329

and let f3 be the boundary of Q. Then f3 is an admissible domain of integration
of an (m - I)-fold integral in [R"'.

Let X be the set of C2 functions on the closure Q. Thus, x c= X iff x: Q--~ [R

has an extension which is C2 on a neighborhood of Q.
Let Y = V(f3). Thus, y E Y means that y: f3-+ [R is Hausdorff (m- 1)­

measurable and that Is i Y 1
2 < 00, with the usual convention that y need be

defined only almost everywhere (m - I) on f3 and that two functions which
are equal almost everywhere (m -- I) on f3 correspond to the same element
of Y. Also

(x, y) = j' xy,
13

x, Y E Y.

The integral here is relative to (m - I)-measure.
Let Z V(Q) x L2(Q) > ... to m factors, where L2(Q) is the usual L 2

space on Q. If x = (Xl .... , Xiii) and y = (yt, ... , yl1l) are elements of Z, then

The integral here is relative to Lebesgue measure in [RIll. We shall use double
and single integral signs to indicate m-fold and (m _. I)-fold integrals, over
the domains Q and f3 ~ cQ, respectively (unless other domains are indicated
explicitly).

Let F: X -->- Y be the operator of restriction to f3, so that Ex = x f3.
Since x j f3 is continuous, it is surely an element of Y. The observation of x
is in effect the set of boundary values of x.

Let U: X -->- Z be the gradient operator. Thus,

Ux = grad x = [Xl"'" x l1l ],

where subscripts indicate partial derivatives. The coobservation of x is its
gradient. And

(Ux, Uy) = JJ grad x· grady = .IJ (X1Yl

Now Ex = 0, Ux = 0, X E X imply that x = O. For Ux == 0 implies that
x is locally constant, hence constant on each connected component of Q.
And Fx = 0 implies that the constant is O. Thus, we may and shall consider
splines relative to F and U.

The space .r is X with the inner product

(x, y) = Jxy + .IJ grad x . grad y, x, Y E .of;

.?l" is the completion of .of. The completions of F, U are F, U. Thus, for
example, y = FoX, x E .1[', means that there is a sequence x" E .r. v == 1,2, ... ,
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such that x'+ 5: as v ... ex; and F>;' ... \' fCc Y L~(/3), We describe the
situation informally by saying that.x (3 y. Similarly, if:: D.x, we say
that grad.x

Now
N {x /1': x (3 0:

consists of the elements of..r which vanish almost everywhere on the boundary
of£:!, and

/,,1 :x r:::i': .iJ grad x.grad ~ owhenever ~

Green's first formula is

JJ (grad x . grad y y lap x) Jrll . grad .v.

where lap x Xl.! i XIII.>II and n is the unit normal of /3. This implies
that harmonic/illlctions ill .1' are splines and, conversely, elements of /'vi n .1.'

are harmonic. For, suppose that x E. .1' and lap x O. Consider any' E. N.
Then there is a sequence '''E..'/', v I. 2, ... , such that "' .. , and ,,. {3 .. 0
as v --.. ex;. Now

JJ grad x . grad 'v I' ,',. (3n . grad ,\-" O.

Hence,

JJ grad x . grad ~ 0

and x r::: /'vi. Conversely, if x E. /'vi n 1', then

.U 'lap x = 0

for all 'E N n /1'. Since x E 1', lap x is continuous and, therefore, vanishes
on Q.

As the elements of /'vi n .'I' are harmonic functions, it is natural to call the
elements of /'vi n i'e /'vi generalized harmonic functions. We shall do this.
Thus, splines relative to the present F and U are generalized harmonic
functions.

Theorem I now states that there is one and only one generalized harmonic
function with prescribed boundary values. The generalized Dirichlet problem
has one and only one generalized solution.
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Theorem 2 states that IH grad x ,1
2 has a minimum among all x E.f with

prescribed boundary values, that the minimum occurs uniquely, and that
the minimizing x is a generalized harmonic function. This is the generalized
Dirichlet principle.

Theorem 5 implies that for any x E .fl, among functions that agree with x
on the boundary, the generalized harmonic function is the best approximation.

The spline operator e of Lemma 2 is the known integral operator, whose
kernel is the normal derivative of Green's function, which produces the
harmonic function having specified boundary values. If Q has a Green's
function with suitable properties, then e is continuous.

9. OTHER ApPLICATIONS

(i) Let X, Z and U: X ---+ Z be as in the preceding section. For x EX,
let Fx be something more than x r f3. For example, Fx may be the triple
(x r f3, x 9', JJ" x), where !Y and If are preassigned subsets of Q. The
essential point for our theory is that F.x E Yand Y be an inner product space.
Here Y may be U(f3) L2(.':./) R so that

(x, y) = J' xy + r rxy- (J'.J' x)( rJ' y.),
13 ·'9· ',·11 iOI]

x, Y EC Y.

The present Fx contains more information than that of the preceding
section, Hence, Fx 0, Ux = 0, X E X imply that x = O. We may, therefore,
apply our theory. The space N will be smaller than before, and, therefore,
M will be larger. The splines in the present appl ication constitute a stronger
tool than do the generalized harmonic functions, but a tool which requires
more complicated calculations.

(ii) We may use higher derivatives. With X as before, a possible
coobservation is the second derivative

where Z is the space with inner product

(Ux, Uy) = .U I Xu Yi,j ,
i.j

~I"+ ~,

x, yEX.

and Xi,j is the partial derivative (;2 x /8s i osi, (s\ .... SUi) E Q. The observation
must be such that kernel F n kernel U = {OJ,

(iii) Even in the analysis of functions of one variable, there may be
interesting applications involving nonscalar observations. One elementary
instance, perhaps suggestive, is the following.
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Let a be the characteristic function of the interval [0. 2}:

\ 1
a(s) ===

10
if 0 s 2,
otherwise;

and b the characteristic function of [I. 3}:

b(s) ~= \ I
10

if I s 3.
otherwise.

Let X == Co[O, 3] space of continuous functions on [0, 3} to R Let
Y L2[0, 2], and F: X-+ Y be the operator F'{ ax - restriction of x to
[0, 2}. Let Z L2[I, 3}. and U: X -~ Z be the operator Ux bx restric-
tion of x to [1,3]. Then Fx" 0, Ux 0, x c X imply that x vanishes almost
everywhere on [0, 3], hence, that x O. We may. therefore, apply our theory.

The inner product in ti[ is

where

C\', y) (xy
'f)

.:1

I Xl'
'1

x, Y EC f.

on [1,2],
on [0, 1) and (2, 3],
elsewhere.

Hence, .0;: = X n U(p,). As X is dense in L2(JL), it follows that

Now Y = Y, Z Z, and

Fx~, ax,

Next

XE.f.

N kernelF {x E oJ/;: ax O} {x E J': x 0 a.e. on [0, 2]].

M N~ ~ if (=0/': rbfb~ -= 0 whenever ~ c /t vanishes a.e. on [0,2](
'j

.:J I
\f E .li': I f~ ==, 0 whenever ~ c l}[2, 3] \
I . 2

{f C :;Z: ~== 0 a.e. on [2,3]] = {f E .:1': (1 - a) f = Of.
Also,

ProjM x = ax, Projy x (1 a)x, .X E /1'.

slIlce x == ax (I -- a)x, and ax E M, (I a)x E N.
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Thus, the optimal approximation of x E ,it is ax, as one would expect, and
the optimal approximation of Gx is G(ax), where G: :Jf' --+ W is linear con­
tinuous and W is a normed linear space. One may calculate the operators
q and e of Lemmas I and 2. Indeed,

and

qy =c (I - a)y, yEUif:

q .~ L

and

e

identity: FJf' ~ .if;

The reader may construct similar applications in which observation and
coobservation involve derivatives or integrals.

In any application of our theory, the interchange of observation and
coobservation produces a new application.
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