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INTRODUCTION

There are situations in which one wants to approximate a mathematical
object x in terms of mathematical observations of x. For example, x may be
a function on [0, 1] to R, and the observations may be a table of values of x
at 8y, 8y 5. 5y, € 0, 1]. Here the observations are the m-tuple x(s)),.... x(s,,).
As another example, x may be a function on the square [0, 1] = [0. 1] to R,
and the observations may be specified cross-sections of x, that is, the functions
X5y« ) X(8,,, ) and x(v, 1), X0 7,y on [0, 1] to R, where s; , 7, £ [0, 1].
In this instance the observations arc functions and, therefore, contain more
information than a finite number of scalars.

Whether the observations of x are scalars or not, it is advantageous to
combine them into one object which we denote Fx and which we call the
observation of x. In the second example above, Fx is the (m 4 m')-tuple of
functions x{s; , )., X(8,, » )i X(-, #y)yon X(-. £,,7).

Besides approximating x, we may wish to approximate Gux, where G is a
given operator, in terms of the observation Fx. Let us write

Ax = EFx,

where £ is the operator which describes our operation on the observation and
A is the operator which describes the process of approximation. The error in
the approximation of Gx by Ax is

Rx = Gx — Ax = Gx — EFx.

This paper is concerned with the choice of £ and the study of R.

Suppose that the operators G, F, and E have been specified. Whereas, Ax is
determined by Fx alone, the error Rx need not be so determined. We will
posit the existence of a coobservation operator U such that Ux and Fx
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together determine x and, therefore, Gx and Rx. Then partial information
about the coobservation Ux, for example a bound on the norm of Ux, will
permit us to appraise Rx.

The optimal approximation, in senses to be described, of x is called the
spline approximation of x, relative to £ and U. And the optimal approxi-
mation of Gx is simply G¢, where £ is the spline approximation of x.

In particular cases Fx and Ux will not merely determine x but will contain
more information than is necessary. Such excess information permits us to
draw conclusions about Rx which are not otherwise available. For example,
in our first illustration above, if Ux == x, == the nth derivative of x on [0, 1].
where 17 = m, then the smaller # is, the more valuable is knowledge about x,, .
If n < m, the observation x(s;),.... x(s,,} and the coobservation x, over-
determine x.

The present paper continues the work of my earlier [I1], but treats the
entire problem anew. Hypotheses are reduced. No conditions of completeness
are required. Proofs are improved, and two errors are corrected.!

Splines, as defined in this paper, include all minimizing splines of other
authors. Our hypotheses of linearity and inner products are justified, 1 think,
by their power and by the fact that many preproblems can be put into our
mold as easily as into another. A vague space which is part of a preproblem
can often be exemplified by an inner product space [9, Chapter 9; 10].

Applications of the present theory are in Sections 8 and 9 below. In
Section § the splines are harmonic functions and the observations are the
boundary values of the unknown functions. Our theorems then pertain to the
Dirichlet problem.

1. HYPOTHESES

Let X be a linear space, Y, Z be inner product spaces, and W be a normed
linear space, all over the real or the complex numbers. Let

FrX->7Y, U X->Z7, G X —> W

be linear operators. For any x € X, we call Fx the observation of x and Ux
the coobservation. We wish to approximate Gx by Ax, where Ax depends
only on Fx. In particular, W may be X, and G the identity.
Assume that
Fx =0, Ux == 0, xelX

imply that x == 0. Thus, Fx and Ux together determine x € X

1 On page 228 of [1 1], the hypothesis that FiX is closed does not imply that V¥ is closed.
Lemma 4, which is true, is misapplied to a space which need not be a Hilbert space.
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2. THE HILBERT SPACE Z AND THE SPLINES

Following Golomb-Weinberger [5], who, however, consider only the
scalar case (Y finite dimensional), we now construct a Hilbert space 7. For
x,)ye X, put

(x,v) = (Fx. Fv) + (Ux, Uy),

where the terms on the right are inner products on Y and Z, respectively.
Then (x, x) = 0 iff x = 0. Therefore, (x, y) is a valid inner product on X.
Let " denote the space X with this inner product. Then the operators Fand U
are bounded on 4" and, hence, continuous on #.

Take completions Z, Y, Z of the spaces 2, ¥, Z, and completions F, U
of the operators F, U, respectively [9, p. 302]. Then 4, ¥, Z are Hilbert spaces
and F, U are linear and continuous. We continue to call F the observation
and U the coobservation operator. Note that

Fx =0, Ux = 0, xed
imply that x = 0, and that

(x,3) == (Fx,Fp) - (Ux,Uy), x,yed.
Put
N = kernel F = {xe 4:Fx = 0!
and
M= N-=lxed:(x,{) = 0 whenever {c N_.
Now if e N, then F{ = 0 and (x, {) = (Ux, U{). Hence,
M = {xed:(Ux, UL = 0 whenever { & N}
and
M 2 kernel U. (1)
We call M the space of splines, relative to F, U.
Assume that neither M nor N is the entire space 4 ; that is, assume that for
some x’ € X, Fx" #£ 0; and for some y° ¢ X, both Fy® == 0 and y° -~ (.
Put
1 = Proju = orthogonal projection of Z onto M.

For xe Z, we call T] x the spline approximation of x. The error in the
approximation of x by [] x is

x — ] x = Projw x.

Note that the splines and other constructions of this section are independent
of Wand G.
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3. THE QUOTIENT THEOREM

The quotient theorem is fundamental in linear approximation and is as
follows [7:9, p. 310].

Let </, A, ¢ be normed, linear spaces, </ and % being complete. Let P
be a surjective linear continuous operator on </ onto -4, and R be a linear
continuous operator on </ into %. If Rx 0 whenever Px — 0, xc ./,
then there is u unique operator Q on # to ¢ such that R - QP. And Q
(the quotient of R by P) is lincar with closed graph. Furthermore, Q is
continuous if .-# is complete.

Completeness of 4 1s suflicient but not necessary for the continuity ot Q.
Of course, # is surely complete if % is finite dimensional.

LEmMMA | (dependence of error on coobservation).  There is u unigue map
q: U > 2 such that
Projy - ¢U:

g is linear and continuous, with Banach norm unity.

Proof. Apply the quotient theorem with ~/ = .4 =% and .4 UZ.
If Ux -~ 0, xe.7, then x@ M by (1) and Proj, x - 0. Thus, ¢ exists and is
unique and linear.

It remains to show that the Banach norm ¢ of ¢ is unity. as this will
imply that ¢ is continuous. Now

N

g su —P— I gy N S
Y- {_“p. (J ‘ ) vaUz;

sup -

o
u‘pr
-r\< \

where x = & + { £ M. (e N. As & may be zero, it follows that ¢ = = 1.
On the other hand,

e
o
.
i
-
o
Iy
B

since (£, {) — (UL, UL — 0. Hence, | ¢ l.

LemMma 2 (dependence of spline on observation).  There is a unique map
e: F24' — 2 such that
l‘I == PrOj M (’F 2

e is linear, with closed graph. And e is continuous iff FZ is closed in Y. In any
case
fe b
We may call e the spline operator. 1t carries the observation of x ¢ .7 into
the approximation of x. Continuity of ¢ is desirable because in practice £x
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is often known only approximately. If e is continuous, then e may be extended
s0 as to be bounded linear on all of Yto 4, with no increase of norm. Then a
contaminated observation (w -+ Sw) = Y, where w = Fx, x e 4, can be used
as an input, and e(w | dw) = ew — ¢(dw). The distortion e(dw) is bounded
in terms of © 8w | If FZ is finite dimensional, then e is surely continuous.

Proof of Lemma 2. Apply the quotient theorem with .=/ = 7" - ¢ and
A = FA4 If Fx -- 0, xeZ, then x < N and Proj,; x = 0. Hence, e is linear
with closed graph; and e is continuous if 4 is closed.

We now show that conversely F.7° is closed if ¢ is continuous. As
A M -~ Nand FN = 0, it follows that F#° = FM. Since e is continuous.
there exists » < o such that

ey byl o= Fx, xe A,
Now eFx — v if x ¢ M: therefore.
X b iFxi. xeM.

To show that FAM is closed. suppose that &< M, v = [, 2,..., and that
F&  »yc Yasv—» oo Then (F¢} is a Cauchy sequence in Y and, therefore,
1€ is a Cauchy sequence in M. Hence, & -> ¢ ¢ M. Since F is continuous.
F& —F¢ = yeFM. Thus, FM is closed.

it remains to show that I -~ e’ 7 .
a2
R | & 1F i
Lel? s sup o= = sup s
Fes0 LFox Fg 20,
wed feM

where x = ¢ + (. &< M, [ e N, since Fx — F& This completes the proof of
the lemma. Note that ' e will be finite iff 1 UE |/ FE is bounded, £ € M,
Fé = 0.

Remark. Observation and coobservation are dual in our hypotheses but
not in our construction or in the roles that they play. Thus, N = kernel F,
whereas M D kernel U properly. We envisage calculations based on a known
Fx. with Ux unknown or partially unknown, x ¢ 7"

4. PROPERTIES OF SPLINES

THEOREM | (spline interpolation [5, 3, 14--16, 1}).  For each x € 4 there is
a unique & & M such thar F€ = Fx; and &€ — T] x.

Proof. The condition F¢ = Fx may be written x - £c N. The decom-
position theorem for 2" implies that the decomposition of x into £ € M and
x - &< N is always possible and unique.
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COROLLARY. For each possible observation o € FA', there is a unique
& e M such that F¢€ — w.

Proof. Ifw = Fx°then & — [ x° - ew, by Lemma 2. Thus, £ is unique.

LemMma 3. If xe 4 and & = ] x, then

Uxiz - U¢ 21 Ox — &)= ix T
cx =& 1Projy x.?
and
(U, Ux - Té) 0.

Proof. The last two of the continued equalities are immediate
(Pythagoras). And

X P = 9 - U 9 = Ul -

since x — £ N. And
IxIp - 1E2 (Fxir | Uxt— FEp- |UE? — Uyt U™
Finally,

(&.x - & =0 = (U, Ux - Ué).

THeOREM 2 (optimal interpolation [6. 5, 21, 3, 14-16, 1]). For each
xeZ, the norm |\ Uy ' is minimal among all y € Z such thar Fy - Fx iff
y=T11Ix

Proof. Put £ == [[x. Then F& = Fx. Now consider y &2 such that
Fy = Fx. thatis, v - £& N. Then ¢ = [y and, by Lemma 3.

0-.ty ER=Up?2.. U
with equality iff y == £

THEOREM 3 (approximation of Ux [21, 3, 14, 16, 1]). For each x € 4, the
norm [ Uy — x)| is minimal among all ne M iff Uy - §) = 0, where

Proof. 1fne M, then

n-x o (g — &)+ (€ — x), n - &M, & —xeN;

e A R S IR

[Fop —x)2 4+ Uy ~ X2 == [ F(n = &R+ Uy -~ §?
=0+ TUE — )R
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Now F(y — x) = F(y — &), since x -- £ ¢ N. Hence,
U — 02 = U@ — 62+ 1UE —x)2 =1 U€ — X~
with equality iff U(n — &) = 0

THEOREM 4 (a lower bound on | Ux| [17a; 12, p. 84]). For any xe &,
1Ux ! =1 UeFxy
with equality iff x = eFx.

Proof. Lemma 3 implies that | Ux | > | U¢/!, € = [] x. with equality iff
x = & Now ¢ = eFx, by Lemma 2. Th]S Comp]etes the proof.

Note that the operator Ue is accessible to us. Thus, Theorem 4 gives a
lower bound on the norm of the coobservation in terms of the observation.
If Y is finite dimensional, || UeFx |2 is a quadratic form in the observation Fx.

[t may appear surprising that Fx should give information about Ux, as our
sole hypothesis has been that Fx == 0, Ux = 0, x € X imply that x = 0. If
Fand U are independent Theorem 4 will assert merely that | Ux |, 2= 0 with
equality iff x = eFx. The more dependent F and U are, the more informative
Theorem 4 is.

5. APPROXIMATION OF Gx

Suppose that G is a given operator on X to a normed linear space W. We
now seek an approximation of G in terms of F. As the sets X and # are the
same, G is an operator on Z to W.

Assume that G has an extension G: Z — W which is linear on .7 and
continuous on N C 7. Let

J = GNP

be the square of the Banach norm of the restriction G | ¥ of G to N. Thus,

J = sup || GLI}? = sup GLI~
G 1beie
The last equality follows from the fact that| {2 = || F{ |2 - UL = UL P
Put
= G || = GeF.

We shall see that A4, is a natural approximation of G. among all maps which
are independent of U.
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LemmA 4. For any xe 4,

Gx - Apx P J(Ux P - UE3H -

=
o

where
Ex J]x - eFx. Aw = GE

The inequalities are sharp in the following strong sense. For each € - 0, each
weFZ and each d > Uew!, there is an x4 such rthat Fx" w,
fUXY s d, and

Gx' o A o J U2 UEY 2 — e & ew: (3)
and for each « 0 and d - 0. there is an x' & 4 such thar Ux' = d and
Gyt — At 2o Ji0x 2 e (4)

1f G is a functional, then equality occurs in the first part of (2) for any prescribed
w=FxeFZandd ' Ux = '|\Uew ', and equality occurs in both parts of
(2) for any prescribed d -~ Ux | . 0.

Proof. Since G — A, -~ G Projy , it follows that
FGx - Agx LS Projyx | s J(,Ux 2 JUE B, & v yed,

by Lemma 3 and the definition of J. This implies (2).
Suppose that € - 0, w == Fx, x =4, and d ' Uew  are prescribed. We

shall show that x" < 7" exists such that Fx? o, Ux®' = d, and (3) holds.
Ifd - | Uew |, this is immediate, for we take x* - £: then Gx° — A,x"!
0 — e. Assume now that ¢ = i Uew :. Take k so that

kt=dr | Uewi?

The definition of J implies that {" e N exists such that

o e i
and
Gl AL * Tk

since A, = GT[& - 0. Put
A0 - /\,Co e étn, gn e s 1[ X,
Then T xY - &, and

:Ux()}‘-z — ‘Ugo 2 \PI'OjAV x“?:z . k iz Z_,'“;F — k ;2 o — Ué"()‘z

by Lemma 3. Hence, | Ux? | = d, and Fx" = F& = Fx = w.



APPROXIMATION BASED ON NONSCALAR OBSFRVATIONS 323

Now,
Gx == kGEO - GE°,
A“X = kA L: - Aogl - /\'A(»‘:” T (‘;507
SOxY = A =k B G = AL kS e k) = kP e

This establishes (3).

Next take w = 0 in the preceding discussion. Then (3) reduces to (4) with
- '\-IJ.

Finally, suppose that G is a functional. Then G = N is a linear continuous
functional on the Hilbert space N. Let g N be the dual (representer) of
G - N. Then, putting (" = g/ ¢, we see that

0 U(ZQ! =1, !CQVU*'A(@‘“,Q - .

The rest of the argument establishes (3) and (4) with € = 0 and inequality
replaced by equality.
THEOREM 5 (geometric property [5, 15,17, 2)). Forw e F24 andd 0, put
I:-lxeX:Fx=wand! Ux! . d.
Then I'is nonempity iff d =1 Uew |, and I' is the intersection of the closed ball
in A of radius (- w 12 -1- d¥)V2 center O, and the hvperplane £° -~ N. where

& ewe M.

And GI', if nonempty, is a convex bounded subset of W, with center G& and
maximum radius J13(d? — 1 UE )12

As the center of a bounded set is unique, G&° is a natural approximation of
Gx, xe I'. But £ and G& are independent of d. Hence, G£° is a natural
approximation of Gx, for all x & 4 for which Fx = w. As @ € FZ is arbitrary,
G¢ is a natural approximation of Gx, for all x € .7, where £ = [[x - eFx.

Proof of Theorem 5. The set{x e 4:Fx = w}is & — N, where w = Fx°

for some x*e . and & = H XY = ew. Thus, F& = w = F(& =~ N): and
Fx == w, xe 4, implies that x — & ¢ N, and vice versa.

The set {xe 4 jx # <! w'? --d? is the closed ball of square radius
jwl2 ¢ and center 0. It is the set {x e X:| Ux" =< d}, since ' x|2 =
Jwiz o Ux 2

Thus, I' is the intersection of the two sets and is nonempty iff
VIR M | b d? that s, || UEY -
Foranyxe I [] x = ew = &°.
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Since I is convex, so is GI'. We now show that GI, if nonempty, has
center G&°. Thus, consider any x ¢ I'. Put y == 26 — x. Then ]y - £°,
and, by Lemma 3,

Oy 2= O8O — 892 Ot = €% = 1 Ux | U8

Hence, | Uyl = Ux|l. AlsoFy = 2F£" — Fx = Fx = w. Hence, y € I, and
Gx, Gy e GI'. Now Gy = 2G¢° — Gx and

Hence, GI" has center G&°.

Lemma 4 implies that GI" is bounded, with maximum square radius
< J(d@ —1'UE? and ~ J(d* ~ ' U %) — e for any € ~ 0. Hence, the
maximum radius is as stated.

COROLLARY (optimality of 4,). For each Be W, each w ¢ FZ, and each
d =z "Uewl,

sup | Gx — B = Jd* — [ U, £ ew

xel”

If Wis a Hilbert space and B+ GE&°, then the supremum is strictly greater than
the right member.

Thus, B, as an approximation of Gx, x € I, is never better than G&¥ == A4,x
(cf. Lemma 4). And if W is a Hilbert space, f8 is certainly worse. unless
B = G&.

Proof. By Lemma 4 there is a sequence x* ¢ I', v == 1, 2,..., such that

Gx" — G‘fo‘j‘z = J(dE— Ugu 2y — 1/,

Fxr = w, and FUX" = d.

Put
),1' — 250 — X"

Then y*e I' for all v. Let z© denote x” or y" according as | Gx* — B =
[l Gy -- B or the contrary. Then
1Gzr — Bl = max(l Gx* — Bil. 1 Gy — B)

= max([(Gx" — G£) + (G&* — B)I, Gy — GE) + (GE* — Bll)
max(|(GE® — ) + (Gx* — G|, (GE* — B) — (Gx" — GE)).

Now

max(ju 4 vi,Lu —ol) = ol,  wreW.
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Hence,

sup Gx — f = sup | Gx — GE 2 = J(d* — | TE ).

xel v=1,2,...
Furthermore, if W is a Hilbert space, v == 0, and | v | is bounded, then
max(fu4-vi,lu—v]))— v, =9
for some & = 0 [L1, p. 230]. In this case, then,

supi| Gx — Bi2 = sup [ Gx" — GE |2 4 8* - J(d?

wel’ v=1,2,...

if GE® — B == 0, since | Gx” — GE°il is bounded.

6. ADMISSIBLE APPROXIMATIONS

Let =/ denote the set of operators A: .4 — W such that

A = EF and R=G— A= QU,

def

where E: FZ — W and Q: UZ — W are linear. The algebraic part of the
quotient theorem implies that 4 € .o/ iff Ax depends linearly on the observa-
tion Fx, x € 4,and Ax = Gx whenever Ux == 0. We say that A4 is an admissible
approximation of G if A ¢ .«/.
Now A4, = G [] is an admissible approximation of G. For
A, = EJF.  E, = Ge,

by Lemma 2; and

G — Ay = G Projy = Q()U, 0, = Gq,

0 (;gf

by Lemma I.
THEOREM 6 (minimal? quotient [8; 9, Chapter 2; 11; 15; 17; 18--20; 4; 2]).
For A €.</, the Banach norm | Q| of Q is minimal if A = A, , in which case

Q1= .
Conversely, if W is one-dimensional and || Q || is minimal, then A = A, . [f W

is many dimensional, then || Q| may be minimal even though, A # A, .

2 Theorem 6 answers affirmatively a question raised in [9, p. 107] about broad and narrow
interpolation. The spline approximation is best in both the broad and the narrow sense.
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Proof. Part |. Consider Ac.«/ and R -G A4 - QU. From the
definition of the Banach norm

D I RxP? I RG:* = s
Q1% - sup ———r SUp = sup G-
ver, 1 UX]? cen, UL ? ‘eN,
Trw T:9 R </ET
since A = 0. {eN. and U c (. As A, =/, it follows that
{
Oul* -/
Now
Oy sup Ry sup (! GProjyx | P[QJ-N;\';)
| I A \ N . . norT B -
e 1UX] ez, - IProjyxi [Ux
U0 Tx o,

Projya-#0
since the excluded case Proj, x = 0 would give Ryx - 0. By Lemma 3,

0 =< || Projyx® — {Ux2 — UE 2 E- ]y, e,

and
i B@JN \'i': ‘,,U, ]3'.‘ —
0 PO 1 TN E I Ux - 0.
Hence,
G Projyx @
FQ0t sup o TOENEE
wer. | Projyx #
Projy .0
Thus.

O, J Q*
forall 4 €./,

Part 2. Suppose that ¥ 1s one-dimensional. To fix our ideas, let the
scalars be the complex numbers. We shall show that A4, is the only element
of </ which minimizes @ i; that is, that

0 J it A, Acs

Forall (e N. R{ =+ G{ = Ry{. Hence, there must be an element & e M
such that RE® . O (otherwise R = R,). Then U&" -+ 0, since R - QU.
Now
Jo=osup 1 GER
LeN,
RIS |
It/ 0.then G{ -~ Oforall {c N, and Rx G Projyx O forallxe.7.
Hence, Q, = 0. On the other hand, Q == 0, else RE® - 0. Hence, Q'
I Q,' = 0, as was to be shown. Now assume that J -- 0.
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Since G | A is a linear continuous functional on the Hilbert space N, there
exists {? € N such that

O = G{o = J12 0.
Put
R7(l ! M a7t
X0 - JUZ| Ué:(ﬂi & led
Then
W IR®E L ROPJUSE
RO g T m e R
And
e REPE RGO TR
PUXY 22— = JUE 2 = U2 = it —,
U e Ve ol NEE:

since (U, UL = (&9, % -~ O and jU{"| = 1. Hence,

P RxY 2 i Rf‘LZ — J| Ufo |2 g 7[&30 2 )J
U 2 | oe R
Hence.
PQIE

Part 3. If W is many dimensional, the following elementary example
shows that 4, need not be the only element of .«/ which minimizes { Q.
Let

X - R Y =27 = W = R%
Fx = (xy,x;,x;)e Y,
Ux = (X, . X, Xy)eZ,
Gx = (x;,xs, X)€W,
X = (X, X, Xy, Xy, X;5) €EXL
Completions of spaces and operators are not needed because of the finite
dimensionality. Now [11, p. 238], A € .7 iff
Ax = (ax;, bxy ., cx,y 4+ xy). a.b.ceR.
Then
Rx = (x; — axy.x, — bx,, —cxy) - QUx.

where Q: Z — W is represented by the 3 « 3 matrix

0 —a
0 1 —bi.
0 0 —e¢
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Now || Q "% is the largest absolute autovalue of the product of this matrix by
its transpose. And 1 is an autovalue. Hence.

Qe L

Clearly t Q ;= 1, ifa== b= 0 and i ¢, 1. Thus, the minimum is not
attained uniquely. The reader may verify that Q = Qy iff @ == b = ¢ = 0.

7. THE COMPLETENESS CONDITION

In some applications the space X is normed and the norms in X and 4
are equivalent. Then X and 7 have the same topology and X == 4. The
simplest case is the one in which X -~ X - .7"; all the bars over our symbols
may then be omitted.

Let us say that the completeness condition [5] holds if X is normed, if F
and U are continuous on X, and if » <« oc exists such that

Xy s B Fx P Ux D, all velX.
This implies that kernel F N kernel U «.: {0}

LemMA 5. Suppose that the completeness condition holds. Then X and &
have equivalent norms. As sets X = X and X -. 2. Furthermore, if G: X — W
is linear and continuous, then the completion G: 4 — W exists and is linear and
continuous. Conversely, if X is normed, if F. U are continuous on X, and
X = 7, then the completeness condition holds.

Proof. Since F and U are continuous on X. ¢ < o¢ exists such that
[x 3 = Fx B - JUx P < c®ixlxs all xe X — 4.
Now the completeness condition implies that
IxT% s b Ix

Thus, X and 4 have equivalent norms. Hence, the completions X and .4 are
equal as sets and have equivalent norms. Finally, G: Z — W is linear and
continuous since G: X — W is.

To prove the converse statement, note that if X == 4, then the identity:
Z ->X is continuous, by one of Banach’s theorems [9, p. 307). and the
completeness condition holds.

8. HAarmONIC FUNCTIONS

In the following application of the theory, harmonic functions are splines.
Let £ be an open region of R™ on which the divergence theorem holds,
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and let B be the boundary of £2. Then 3 is an admissible domain of integration
of an (m — 1)-fold integral in R™.

Let X be the set of C, functions on the closure 2. Thus, x ¢ X iff x: 2 - R
has an extension which is C, on a neighborhood of 2.

Let Y = L2%f). Thus, y € ¥ means that y: § — R is Hausdorfl (m — 1)-
measurable and that [, |y |* < oo, with the usual convention that y need be
defined only almost everywhere (m — 1) on 8 and that two functions which
are equal almost everywhere (m -— 1) on 3 correspond to the same element
of Y. Also

(x, ) = J Xy, x,yev.
B
The integral here is relative to (m — |)-measure.

Let Z = L¥($2) X L*£) > - to m factors, where L) is the usual L*

space on Q. If x = (x'...., x™) and y = (y'...., »”) are elements of Z, then

@y =[] 3
2 4
The integral here is relative to Lebesgue measure in R”. We shall use double
and single integral signs to indicate m-fold and (m — 1)-fold integrals, over
the domains 2 and 8 = &2, respectively (unless other domains are indicated
explicitly).

Let F: X — Y be the operator of restriction to 8, so that Fx —= x .
Since x | B is continuous, it is surely an element of Y. The observation of x
is in effect the set of boundary values of x.

Let U: X — Z be the gradient operator. Thus,

Ux = grad x = [x,..., x,],

where subscripts indicate partial derivatives. The coobservation of x is its
gradient. And

(Ux, Uy) = ” grad x - grad y = H (191 = 0 o Xy V)

Now Fx = 0, Ux = 0, x € X imply that x = 0. For Ux = 0 implies that
x is locally constant, hence constant on each connected component of £2.
And Fx = 0 implies that the constant is 0. Thus, we may and shall consider
splines relative to F and U.

The space #" is X with the inner product

(x,y) = [ Xy + [ grad x - grad v, X, yed&;

Z is the completion of Z. The completions of F, U are F, U. Thus, for
example, 7 = FX, X € Z, means that there is a sequence x* € 2", v =— 1, 2

.....
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such that x"-— ¥ as v > oc and Fx'-»7Fc ¥ . LYf). We describe the
situation informally by saying that ¥° 3 = . Similarly, if = — UX, we say
that grad ¥ - =.
Now
N dxcd:xi B 0

consists of the elements of -4 which vanish almost everywhere on the boundary
of £, and

M - :.\' e H grad x - grad { -~ 0 whenever { ¢ ./V:.

Green's first formula is
'I (grad x - grad y -+ y lap x) | vi - grad X, N E A,

where lap x = x;, - * | x,.,, and # is the unit normal of 5. This implies
that harmonic functions in 4 are splines and, conversely, elements of M ¥
are harmonic. For, suppose that x .7 and lap x -= 0. Consider any (< N.
Then there is a sequence {2, v = 1,2, suchthat &> and &+ 8 >0
as v — oo. Now

” grad v - grad ¥ - ’ Cn - grad x | {0 B egrad v > Q).

Hence,

H grad v-grad { - 0
and x € M. Conversely, if xe M N .7 then
“ {lapx =0

for all {e N n 4. Since x .4, lap x is continuous and, therefore, vanishes
on 2,

As the elements of M N 4 are harmonic functions, it is natural to call the
elements of M N 4 - M generalized harmonic functions. We shall do this.
Thus, splines relative to the present F and U are generalized harmonic
functions.

Theorem | now states that there is one and only one generalized harmonic
function with prescribed boundary values. The generalized Dirichlet problem
has one and only one generalized solution.



APPROXIMATION BASED ON NONSCALAR OBSERVATIONS 331

Theorem 2 states that [[| grad x /[ has a minimum among all x € £ with
prescribed boundary values, that the minimum occurs uniquely, and that
the minimizing x is a generalized harmonic function. This is the generalized
Dirichlet principle.

Theorem 5 implies that for any x € Z, among functions that agree with x
on the boundary, the generalized harmonic function is the bestapproximation.

The spline operator ¢ of Lemma 2 is the known integral operator, whose
kernel is the normal derivative of Green’s function, which produces the
harmonic function having specified boundary values. If £2 has a Green's
function with suitable properties, then ¢ is continuous.

9. OTHER APPLICATIONS

(1) Let X, Zand U: X — Z be as in the preceding section. For x € X,
let Fx be something more than x| 8. For example, Fx may be the triple
(x1 B, x| % [[sx), where & and & are preassigned subsets of . The
essential point for our theory is that Fx € Y and Y be an inner product space.
Here Y may be LXB) » L¥%) ¥ R, so that

[ [ Xy — (‘({ J \)(L J yi), x,rev.

o

(x,y) = Jg xy +

The present Fx contains more information than that of the preceding
section. Hence, Fx == 0, Ux = 0, x € X imply that x = 0. We may, therefore,
apply our theory. The space N will be smaller than before, and, therefore,
M will be larger. The splines in the present application constitute a stronger
tool than do the generalized harmonic functions, but a tool which requires
more complicated calculations.

(1) We may use higher derivatives. With X as before, a possible
coobservation is the second derivative

Ux = D%x: 2 x R x R" >R,

where Z is the space with inner product
(Ux, Uy) = | ' Y XiiYis. X yeX,
R

and x; ; is the partial derivative ¢2x/és? &s/, (s%,..., s") € £2. The cbservation
must be such that kernel F N kernel U = {0}.

(iii) Even in the analysis of functions of one variable, there may be
interesting applications involving nonscalar observations. One elementary
instance, perhaps suggestive, is the following.

640(8/4-4



332 SARD

Let a be the characteristic function of the interval [0. 2}:

i1 it 0= s w2,

als) = 10 otherwise;

and b the characteristic function of [l1, 3]:

oyl w1y 03,
bls) = 10 otherwise.

Let X = Cyf0, 3] - space of continuous functions on [0, 3] to R. Let
Y o 120, 2], and F: X — Y be the operator Fx - ax -- restriction of x to
[0, 2]. Let Z - L2[I, 3], and U: X — Z be the operator Ux = bx - restric-
tion of x to [1, 3]. Then Fx = 0, Ux -- 0, x € X imply that x vanishes almost
everywhere on [0, 3], hence, that x -~ 0. We may. therefore, apply our theory.
The inner product in Z is
.2 -3

(x ) = | ap e ‘ Xr - ‘ Xy du, X, red.

Y0 1

where

Szd_\' on {1, 2},
dx on [0, 1) and (2, 3}.

du
?\ 0 elsewhere.

Hence, Z = X N L*(u). As X is dense in L*(w), it follows that
A = LX)
Now Y = VY, Z — Z, and
Fx — ax, Ux -+ bx. xef.
Next

N = kernel F — {yxeZ:iax =0} — {xeZ:x - 0ae. on [0, 2].

3 .
M == Nt = ;g“ e f bébL -= 0 whenever { .2 vanishes a.e. on [0, 2]2
b |

B )
< )ged [ = 0 whenever L L2[2, 3]:

={fcd:E=0ae on[2,3]} ={fcd: (1 —a)é =0

Also,
Projy x = ax, Projy x -~ (1 - a)x, xed.

since x = ax + (I —a)x, and axe M, (1 -~ a)x e N.
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Thus, the optimal approximation of x € . is ax, as one would expect, and
e optimal approximation of Gx is G(ax), where G: 2" — W is linear con-

tinuous and W is a normed linear space. One may calculate the operators

q

and e of Lemmas | and 2. Indeed,

gy = (1 —ayy, yeUZF: and e -= identity: F4 — 7

and

[

o= 1 e ? = 2.

The reader may construct similar applications in which observation and

coobservation involve derivatives or integrals.

In any application of our theory, the interchange of observation and

coobservation produces a new application.

"d
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REFERENCES

. J. H. Aneeerg, E. N. Nitson, anp J. L. WaLsH, Best approximation and convergence
properties of higher-order spline approximations, J. Math. Mech. 15 (1965), 231-243.

. J. H. AHLBERG anD E. N. NirsoN, The approximation of linear functionals, STAM
J. Numer. Anal. 3 (1966), 173-182.

. C. R. DE Boor, Best approximation properties of spline functions of odd degree,
J. Math. Mech. 12 (1963), 747-749.

. C. R. pE Boor AND R. E. LyNcH, On splines and their minimum properties, J. Math.
Mech. 15 (1966), 953-969.

. M. GorLomB AND H. F. WEINBERGER, Optimal approximation and error bounds, in
“On Numerical Approximation” (R. E. Langer, Ed.), pp. 117- 190, University of
Wisconsin Press, Madison, WI, 1959,

. J. C. HoLLADAY, A smoothest curve approximation, Math. Tables Aids Computation
11 (1957), 233-243.

. A. SARD, Integral representations of remainders, Duke Math. J. 15 (1948), 333-345.

. A. SarD, Best approximate integration formulas: best approximation formulas,
Amer. J. Math. 71 (1949), 80-91.

. A. SARD, “Linear Approximation,” American Mathematical Society, Providence,
RI, 1963.

. A. SarD, Uses of Hilbert space in approximation, in “"Approximation of Functions™
(H. L. Garabedian, Ed.), pp. 17-26, Elsevier, Amsterdam/New York, 1965.

. A. SArD, Optimal approximation, J. Functional Analvsis 1 (1967), 222-244: 2 (1968),
368-369.

12. A. SARD AND S. WEINTRAUB, A Book of Splines,” Wiley, New York, 1971,

. L. J. ScHOENBERG, Contributions to the problem of approximation of equidistant
data by analytic functions. Part A-—On the problem of smoothing or graduation.
A first class of analytic approximation formulae, Quarr. Appl. Math. 4 (1946), 45-99.

. 1. J. ScHOENBERG, Spline interpolation and the higher derivatives. Proc. Nar. Acad.
Sci, U. S. A.51(1964), 24-28.

. 1. J. SCHOENBERG, Spline interpolation and best quadrature formulae, Bull. Amer.
Math. Soc. 70 (1964), 143-143.



334 SARD

16. 1. J. SCHOENBERG, On interpolation by spline functions and its minimal properties.
in *On Approximation Theory. Proceedings of the Conference at Oberwolfach, 1963
(P. L. Butzer and J. Korevaar, Eds.), pp. 109-129, Birkhiuser, Basel, 1964.

17. 1. J. ScHOENBERG, On best approximations of linear operators. fndag. Math. 26 (1964).
155-163.

17a. 1. J. SCHOENBERG, Spline interpolation and the higher derivatives, /in "Abhandlungen
aus Zahlentheorie und Analysis, zur Erinnerung an Edmund Landau®™ (P. Turan,
Ed.), pp. 281-295, Deutscher Verlag der Wissenschaften, Berlin, 1968.

18. D. SecresT, Best approximate integration formulas and best error bounds. Marh.
Comput. 19 (1965), 79-83.

19. D. SEcresT, Numerical integration of arbitrarily spaced data and estimation of errors.
SIAM J. Numer. Anal. 2 (1965), 52 68.

20. D. Secrest, Error bounds for interpolation and differentiation by the use of spline
functions, SIAM J. Numer. Anal. 2 (1965), 440-447.

21. J. L. WaLsH, J. H. AHLBERG AND E. N. NiLson, Best approximation properties of the
spline fit, J. Math. Mech. 11 (1962), 225-234.



